Nonparametric Estimation of the Bivariate Survival Function with Truncated Data
نویسنده
چکیده
Randomly left or right truncated observations occur when one is concerned with estimation of the distribution of time between two events and when one only observes the time if one of the two events falls in a fixed time-window, so that longer survival times have higher probability to be part of the sample than short survival times. In important AIDSapplications the time between seroconversion and AIDS is only observed if the person did not die before the start of the time-window. Hence, here the time of interest is truncated if another related time-variable is truncated. This problem is a special case of estimation of the bivariate survival function based on truncation by a bivariate truncation time, the problem covered in this paper; in the AIDS-application one component of the bivariate truncation time-vector is always zero. In this application the bivariate survival function is of interest itself in order to study the relation between time till AIDS and time between AIDS and death. We provide a quick algorithm for computation of the NPMLE. In particular, it is shown that the NPMLE is explicit for the special case when one of the truncation times is zero, as in the aids-application above. We prove that the NPMLE is consistent under the minimal condition that ∫ dF/G < ∞. Moreover, we prove asymptotic normality under a tail assumption at the origin which is an empirical analoque of ∫ dF/G < ∞. The condition holds in particular if the truncation distribution has an atom at zero. We provide an algorithm for estimation of its limiting variance. By simply plugging in one of the several proposals for estimation of the bivariate survival function based on right-censored data in the estimating equation we obtain an estimator based on right-censored randomly truncated data. Here, substitution of an estimator which handles the right-censoring efficiently leads to an efficient estimator.
منابع مشابه
Nonparametric Estimation of the Bivariate Survival Function
Randomly left or right truncated observations occur when one is concerned with estimation of the distribution of time between two events and when one only observes the time if one of the two events falls in a xed time-window, so that longer survival times have higher probability to be part of the sample than short survival times. In important AIDS-applications the time between seroconversion an...
متن کاملEfficient Estimation from Right-Censored Data when Failure Indicators are Missing at Random
The Kaplan–Meier estimator of a survival function is well known to be asymptotically efficient when cause of failure is always observed. It has been an open problem, however, to find an efficient estimator when failure indicators are missing at random. Lo (1991) showed that nonparametric maximum likelihood estimators are inconsistent, and this has led to several proposals of ad hoc estimators, ...
متن کاملEecient Estimation from Right-censored Data When Failure Indicators Are Missing at Random
The Kaplan{Meier estimator of a survival function is well known to be asymp-totically eecient when cause of failure is always observed. It has been an open problem, however, to nd an eecient estimator when failure indicators are missing at random. Lo (1991) showed that nonparametric maximum likelihood estimators are inconsistent, and this has led to several proposals of ad hoc estimators, none ...
متن کاملBayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution
Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...
متن کاملBivariate Competing Risks Models Under Random Left Truncation and Right Censoring
In survival or reliability studies, it is common to have truncated data due to the limited time span of the study or dropouts of the subjects for various reasons. The estimation of survivor function under left truncation was first discussed by Kaplan and Meier by extending the well known productlimit estimator of the survivor function. The focus of this paper is on the nonparametric estimation ...
متن کامل